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Stability and Policy Rules in Emerging Markets 

 

1. Introduction 

We examine basic stability issues in a dynamic stochastic general equilibrium model 

for a small open economy (SOE), adapted to an emerging market with two classes 

(high and low productivity) of consumer-workers
1
 (SOEME).  

 

Models with forward-looking behavior can easily be unstable. Sargent and Wallace 

(1975) demonstrated that with rational expectations prices are indeterminate under an 

interest rate instrument. But McCallum (1981) later showed indeterminacy only 

occurs if the Central Bank (CB) places no weight on prices in its response. The basic 

point is some nominal anchor is required to fix the price or inflation level in an 

economy. The CB response to inflation, or its targeting of nominal money stock, 

provides such an anchor, but many other rigidities and lags may serve to anchor 

inflation (Friedman, 1990). 

 

The NKE literature (Woodford, 2003) has a new justification for a large CB response 

to inflation. Apart from its contribution to stability, it prevents higher prices today 

being set in response to expected excess demand. If prices are sticky, setting higher 

prices today creates inflation persistence. Therefore the literature justifies a Taylor 

type monetary policy rule, with the CB‟s response to inflation, exceeding unity. 

Moreover, it is shown analytically, in the canonical forward-looking model, that such 

a response exceeding unity is necessary for stability.  The implication is a monetary 

policy rule can perform better than optimization.  

 

A monetary policy rule can also be justified as a credible commitment, preventing 

opportunistic behavior from the CB resulting in an inflation bias. If future policy 

affects the output gap and future output gaps affect inflation credible policy may 

reduce inflation with lower output cost. This argument holds even if the CB has no 

inflation bias, as in emerging democracies where inflation hurts the poor and loses 

votes (Goyal, 2007). But in a discretionary optimum also, even though the CB 

                                                 
1
 See Gali and Monacelli (2005), Goyal (2011a). 
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reoptimizes every period, it has no incentive to create surprise inflation, and the 

private sector recognizes this (Clarida et. al. 1999).    

 

We derive the stability result for the canonical SOEME, and it turns out to have the 

same structure as the result for the SOE. The simulated SOEME model, however, has 

more lags and some degree of backward looking behavior arising from its calibration 

to an emerging market with many types of rigidities. The stability result derived for 

the simulated model turns out to have a very different structure. There is no restriction 

on the coefficient of inflation, but rather a threshold on the coefficient of the output 

gap. Different types of rigidities may be helping provide a nominal anchor.   

 

The analytical result is explored through simulations in the SOEME model itself and 

in a variant that also adds an equation for the evolution of government debt. The debt 

model also demonstrates the contribution of rigidities in relaxing stability conditions.  

 

The implication is consumer-welfare based optimization can be as effective as 

following a monetary policy rule. If a rule is followed, the response coefficients need 

not exceed unity. The practice of monetary policy in India is consistent with these 

results. Analytical solutions of responses to monetary policy shocks in the SOEME 

model with a monetary policy rule are directionally similar to simulated responses in 

the calibrated optimizing model. The calibrated CB‟s reaction function in the 

SOEME, and a Taylor-type monetary policy rule estimated with Indian data both 

show response coefficients much smaller than unity. 

 

The result may apply more generally than just to emerging markets to the extent 

advanced economies also have many types of frictions. 

 

The structure of the paper is as follows: Section 2 presents a basic SOEME; section 3 

derives the implications of stability for a policy rule; section 4 discusses analytical 

and simulated responses to shocks; section 5 presents estimated monetary policy rule, 

before section 6 concludes. Derivations are in appendices. 

 

2. A Small Open Emerging Market Model 
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A microfounded dynamic stochastic general equilibrium model for a small open 

emerging market derives the following aggregate demand (AD) (2) and supply curves 

AS (3) (Goyal 2011), subject to which the central bank (CB) minimizes a loss 

function (1), derived from consumers‟ welfare. The loss function is a weighted 

average of output, inflation and interest rate deviations from equilibrium values:  

222 iqqxqL ix                   (1) 

 

The last is a smoothing term that prevents large changes in the policy rate, where it is 

the riskless nominal interest rate. The first is the output gap ttt yyx  , and the 

second term, inflation, can be either domestic inflation, πH, or consumer price 

inflation 1 ttt pp  (where pt  log Pt). The CB minimizes (1) subject to the AD 

(2) and AS (3). The dynamic AD equation for the SOEME is: 

   )rr}{Ei(
1

}x{Ex t1t,Htt

D

1ttt 


      (2) 
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The dynamic AS is: 

  111   bft,HbtDt,Htft,H xE    (3) 

 

Lower case letters are logs of the respective variables. Since empirical estimations 

and the dominance of administered pricing in an emerging market (EM) suggests that 

past inflation affects current inflation, the AS (3) has a positive b as the share of 

lagged and f the share of forward-looking inflation. Table 1 explains the parameters 

and gives their calibrated values.  

 

Table 1 about here 
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The model adapts the SOE model of Galí and Monacelli (2005) (GM) for an emerging 

market with two types R and P of consumer-workers. The R types, with population 

share η, 0< η <1, are able to smooth consumption in perfect capital markets.  P types 

are assumed to be at a fixed subsistence wage, financed in part by transfers from R 

types. The labour supply elasticities of the P types are higher than the R types and the 

P type intertemporal elasticity of consumption is zero.  

 

Marginal cost at its steady-state level, when prices are perfectly flexible, defines the 

natural output
ty . But the world output level is the final steady-state for a SOEME. 

Low productivity, poor infrastructure and other distortions keep the natural output in 

an EM below world levels. Convergence to world levels is part of the process of 

development. Productivity shocks, at, can be more persistent in EMs that are in 

transition stages of upgrading technologies.  

 

The steady-state natural interest rate, ρ, is defined as the equilibrium real rate, 

consistent with a zero or target rate of inflation, when prices are fully flexible in a 

SOE. It is also the time discount rate since   log11  is where β is the discount 

factor. Shocks that change ρ open an output gap and affect inflation. The shocks in the 

term trr  that enters the AD therefore lead to a deviation of the natural rate from its 

steady-state value. The deviation occurs due to real disturbances that change natural 

output; trr  rises for any temporary demand shock and falls for any temporary supply 

shock. Optimal policy requires insulating the output gap from these shocks, so that the 

CB‟s interest rate instrument should move in step with the natural rate. Thus the CB 

would accommodate positive supply shocks that raise the natural output by lowering 

interest rates. It would offset positive demand shocks that raise output above its 

potential by raising interest rates. In an EM a reduction in cP is an additional large 

shock requiring reduction in the policy rate, since it increases the distance from the 

world consumption level. The parameters of the other shock terms are also different. 

Goyal (2011a) systematically compares the differences in behaviour and outcomes for 

the SOE and SOEME.  As η approaches unity the EM becomes developed and the 

SOEME collapses to the SOE. 
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In the next section we draw out the implications of structure and rigidities in the 

SOEME for stability. Forward-looking behaviour can imply instability and multiple 

equilibria with an interest rate rule. The NKE-SOE models have a policy rule that 

imposes stability.  An equivalent rule can be derived for the SOEME, with a similar 

response coefficient for inflation that exceeds unity.  

  

3. What stability implies for a policy rule 

We demonstrate instability in the SOEME system comprising (2) and (3), and then 

show how an adequate policy response can impose stability. Full stabilization implies 

that 0,  tHtx  , 
tt yy   and tt rrr  . Substituting dynamic AD (2) in the AS

2
 (3) to 

write the AS as a function of xt+1 the two equations become: 

   1,

1

1 



  tHtDttt ExEx       (4) 

 

     1

1

1 



  t,HtDDttDt,H ExE         (5) 

 

In matrix form they are:   

with 

















1

11

DD

D
oA            (6) 

 

Since the determinant and trace of the coefficient matrix Ao are both greater than zero 

the system is unstable. Local indeterminacy is possible and sunspot fluctuations can 

occur. 

 

But a major result in the literature is that an adequate policy response to inflation, that 

exceeds unity, can impose stability. The reason is that since sticky prices are set in a 

forward-looking manner, an early and robust policy response will prevent inflationary 

expectations entering this price setting and therefore lower inflation and the future 

costs of disinflating (Clarida et.al. 1999). 

 

GM show analytically that a simple Taylor-type policy rule, with a coefficient on 

inflation that exceeds unity, is sufficient to ensure stability in the SOE. We derive the 

                                                 
2
  In order to simplify the derivations b is taken as equal to 1. 

 
 








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







 



1

1
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o

t

t

E
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equivalent stability condition for the SOEME. A simple policy rule whereby the 

interest rate is raised if there is domestic inflation or if the output gap is positive is: 

txt,Htt xrri        (7) 

 

Substituting for it minus its equilibrium value from the policy rule into (2), 

transforming Ht   into t, and substituting for t, then substituting for xt, with i 

substituted in it, in (3), we get: 

     11 1   ttttDtDxD E)(xEx   (8) 

 

       11   ttxDDttDDtDxD E)(xE   (9) 

 

The AD and AS (2) and (3) transformed to (8) and (9), as required for stability 

analysis, and written in matrix form are:  

 

 




















1

1

tt

tt

T

t

t

E

xE
A

x


                                                        (10) 

where  

 












xDDDD

D

TA


 1
and




DxD

1
 

 

The stability condition
3
 for a unique non-explosive solution is

4
 

    011   xD . A policy response to inflation that exceeds unity is sufficient 

to ensure stability. The result for the SOE in GM is the same, only the coefficient 

values are different. GM‟s  becomes D in the SOEME; rr t is also different. 

 

But a slightly modified version of the SOEME model turned out to be stable under 

optimizing simulations conducted with the parameters as given in Table 1. 

 

                                                 
3
 The stability condition for a two equation difference system is determinant A > 0, and determinant A+ 

trace A>-1 when the system is written in the form ...........)( 1  tt zEz  (see Woodford, 2003). 
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  1,,1,

1
  tH

f

b

tD

f

tH

f

tH x 



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







            (12)

 

 

In sensitivity analysis with the above model simulations are stable, even with low 

weights on inflation. Since a positive smoothing parameter qi reduces the policy 

response to inflation some weight on  is required. With qi = 0 even no weight on 

inflation generates stable outcomes. For example, if qi = 1 outcomes are indeterminate 

with qx = 0 and q less than 1; they are also indeterminate with qx =0.07 if q less than 

0.9; but if qi =0 and qx =0.07 outcomes are stable even with q=0. In the estimated 

reaction functions of the simulations in Goyal (2011a, Table 4) the weights on 

inflation range from 4.28 to 0.0091
5
. The lags in the system, and other structural 

aspects, may be contributing to stability even with a low policy reaction to inflation. 

 

Since the SOEME model under policy optimization was stable under more relaxed 

conditions on the parameters, we next derive stability conditions for the simulated 

equations. 

 

3.1 The stability condition for the simulated model under a policy rule 

The two simulation equations (11) and (12), written in the form required for stability 

analysis are (derived in Appendix A): 

  ttt,Htf

ttxt,Hb

f

b

ttDt

rrv.E.

v.x...XEx





































11

1111

80180

202080
2

20












         (13) 

 

                                                 
5
 A reaction function differs from the objective function or policy rule in that it gives the final weight 

on the CB objectives after the constraints subject to which the optimization is done, or to which the rule 

is applied, are taken into account. 
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     
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They give the following higher order difference equation system: 
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 










 D

C
1

 

 

 

Given that both the output gap and inflation are non-predetermined variables, the 

solution to above system is locally unique if and only if the following three conditions 

are satisfied
6
. 

01 21  aa                 (16) 

01 21  aa  or 211 aa                (17) 

12 a                  (18) 

 

The first condition can be stated as 1 + A - B > 0 and solves to (see Appendix B): 

  120   bxfD .                (19) 

                                                 
6
 Discussed in Bullard and Mitra (2002), Blanchard and Kahn (1980), Woodford (2003), Gali (2008). 
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For the second condition   1 BA , and implies:  

  120   fDbx.               (20) 

 

The third condition, 1 B , is trivially true. 

 

Conditions (19) and (20) imply there is no constraint on the weight given to inflation. 

Both give high upper bounds for x with the bound from (20) being lower, so that it is 

the operative condition
 7

. The stability conditions are all satisfied for the parameters in 

Table 1. 

 

3.2 Stability introducing government debt in the simulation model 

 

There are interesting implications for stability when government debt is introduced in 

the AD and AS model. Deficits and interest payments add to government debt. 

Following Goyal (2011b) assume a cashless economy in which all government debt 

consists of riskless one-period nominal debt. The maturity value of nominal 

government debt, BtPt changes over time as follows: 

   tttttttt TGPPBiPB   111              (21) 

 

The maturity value of real public debt is Bt. Real government purchases are Gt and 

nominal net tax collections are Tt so that real tax collections are
tt

PT . The real 

debt to output ratio is bt. Assuming a positive rate of growth of output g and positive 

inflation 11 1,1   tttttt PPYYg   and making other transformations gives:  

    
t

t

t

t
tttttt

YY

G
bgibb


  11              (22)

     

Real debt rises with the nominal interest rate, falls with inflation and the growth rate, 

and rises with the primary deficit ratio 
t

t

t

t

YY

G 
 .  

 

                                                 
7
 In the benchmark calibrations with γb = 0.2 the upper bound for x  is 49.2 and with γb = 0.9 it is 16.6. 
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To analyze responses to macroeconomic shocks, it is necessary to linearize (22) 

around a steady-state. In a steady state with zero inflation and real disturbances, Bt, 

real tax collections, 
tt

PT , and G are equal to steady-state values 0,B, , 

0G , and 01
1




ii
t

. If 0 YYt grows at a steady-state growth g, B will 

also grow at the same rate so YBb  is constant. For consistency with the evolution 

of nominal debt (3), steady-state fiscal values must satisfy  BG   1 .  The 

linearization gives: 

 

     tttttt îbˆĜgbbb̂b̂  

  1

1              (23) 

 

Where     YYBBb tttt   ˆ,ˆ  and  YGGG tt ˆ , and iii tt ˆ . The 

term in steady-state growth g in equation (23) comes from assuming a steady-state 

rate of growth g of natural output 
tY so that 1 tt YY . Such growth is to be expected 

for an emerging market in the process of converging to world output levels.  

 

For determination of a local equilibrium it is sufficient to consider fiscal rules that are 

nearly consistent with a steady state
8
. Woodford (2003, pp.312) defines a fiscal or tax 

rule as locally Ricardian if on substituting into the local flow budget constraint (23) 

“it implies that {bt} remains forever within a bounded neighborhood of B , for all 

paths of the endogenous variables {t, Yt, it} that remain forever within some 

sufficiently small neighborhoods of the steady-state values  iY ,,0 , and all small 

enough values of the exogenous disturbances (including 
t

Ĝ ).” With this condition, 

the fiscal policy rule can be neglected, since the monetary policy rule and the 

outcomes of equilibrium inflation, output and interest rates do not depend on the paths 

of either of the purely fiscal variables {Bt, t}. They cancel out in the individual‟s 

budget constraint.  

 

Consider a linear approximation (24) to a tax rule where b and g are the respective 

response coefficients of taxes to deviations in debt ratio and in government 

expenditure: 

                                                 
8
 The treatment in this section follows Woodford (2003), Chapter 4, Section 4, and Goyal (2011b). 
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tgtbt Gb ˆˆˆ

1   
                 (24) 

 

Substituting this into (23) gives a law of motion for real government debt (25).  

 

     ttgttbt îbĜgbbb̂b̂  
 11 1

1
         (25) 

 

The latter is stable or the tax rule (24) is locally Ricardian if and only if: 

  111 

b                (26) 

 

Or if 1b , then fiscal policy or the tax rule is locally Ricardian if and only if 

  1b . Woodford (2003) also shows if fiscal policy is locally Ricardian, 

equilibrium is determinate if and only if the response of monetary policy to inflation 

exceeds unity, where an equilibrium is “(locally) determinate if and only if there are 

unique bounded equilibrium processes for all of the endogenous variables {bt, t, Yt, 

it} for sufficiently tightly bounded processes for the exogenous disturbances (pp. 

314)”.   

 

We define a new concept of semi-stable equilibrium: 

 

Definition: Equilibrium is semi stable if and only if there are unique converging 

processes for all the endogenous variables for large but bounded exogenous 

disturbances. It differs from Woodfords definition in that the bounds on the 

equilibrium processes for the endogenous variables can be large. 

 

The AD, AS system plus the evolution of debt (25) require the additional stability 

condition (26).  

 

Formal stability analysis also demonstrates this. Writing the AD, AS system of 

equations as: 

    t

t,H

t

t,H

t

t,Ht

tt
C

x

A

Bx

AE

xE




































1

1

1

1 1


             (27) 
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Let:  

 11

1

1 1























ttttt

t,Ht

tt
zzK,

A

B

A
D,zE

E

xE


 

 

Adding the debt equation gives a system of equations of the form: 

  t

t

t

bt

tt
C

b̂

K

c

D

b̂

zE











































1

1

1

1

0


             (28) 

 

Where c just includes b  and vector of zeroes. 

 

Because the matrix is block diagonal, its eigenvalues are the eigenvalues of D and the 

diagonal element . Therefore determinacy requires eigenvalues of D in 

mod form should be outside the unit circle and the value of  should be 

inside the unit circle. The latter is the case of a locally Ricardian fiscal rule
9
.   

 

If fiscal policy is locally non-Ricardian, bounded paths for the endogenous variables 

will require monetary policy to violate the Taylor Principle and moderate its response 

to inflation in order to prevent government debt from exploding. So unsustainable 

borrowing will require monetary accommodation. 

 

4. Response to shocks 

 

Since the SOEME simulation model with a monetary policy rule is stable, it is 

possible to analytically derive the response to monetary shocks vt using the method of 

undetermined coefficients (derived in Appendix C): 

    1 tt,H v  where 
 

     

































DD

bD

D

fx.

..

120

8020
          (29) 

 

 
 

tftbt

D

t vvvx 





  21

1
                  (30) 

                                                 
9
 In benchmark simulations (Goyal 2010), the value of , so 

the fiscal rule is Ricardian. 
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With the benchmark parameters of Table 1, a persistent rise in vt (monetary 

tightening) of 0.1 leads to a fall in inflation of 0.03 and in output of 0.000565. This 

compares well with a natural rate shock in the simulations, which raises the policy 

rate by 0.013 and reduces inflation by 0.0126 and output by 0.0126 in the first period. 

The effect is stronger under optimization but in the same direction as with a policy 

rule. 

 

A key result, supported by the analysis and the simulations, is: lags and rigidities in 

the SOEME, make it stable for a coefficient of inflation, in both the loss function and 

the policy rule, of less than unity.   

 

4.1 Simulated responses in the SOEME debt model 

The additional parameters in the simulated SOEME debt model are also given in 

Table 1. They are calibrated on Indian data
10

. The effects of shocks to domestic 

inflation, to the natural rate, and to government expenditure were explored in Goyal 

(2011b). Each shock was of the same generic form. The Ĝ  shock, for example, can be 

written as G
tt

G
t ĜĜ  1 .  

 

The cost shock has the least persistence and its effects therefore were the most 

transient. Inflation following the cost shock led to a fall in 
tb̂  but the system was back 

at its steady state value in 4 periods. 

 

If natural rates fell, 
tb̂ rose sharply, as the government borrowed against the rise in 

potential output due to a positive supply shock, or spent to maintain demand after a 

negative demand shock, or compensated for a fall in cP. These are all factors reducing 

natural rates. This fiscal response dominated the reduction in b̂  due to the fall in 

interest rates, which equation (25) shows should occur. Since the policy rate fell less 

than the natural rate, the output gap rose, explaining some of the adjustments. 

Convergence back to the steady state was slow, not fully completed in the 12 periods.  

 

                                                 
10

 The calibrations are explained and detailed time paths and figures of the simulations are given in 

Goyal (2011b). 
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Sensitivity analysis for both types of shocks was similar except for the response to 

changes in g. A shock to the consumption of the poor induced the government to 

borrow more under higher growth, but the reduction in the debt ratio under higher 

growth reduced the deviation of debt under a cost shock. A fall in b reduced the 

deviation from steady state debt, since adjustment back would be more difficult. A 

lower b , however did not lead to a rise in borrowing as could be expected if steady-

state debt was low. Instead, as lower servicing costs reduced current borrowing 

requirement,
tb̂ rose less.  

 

In accordance with theoretical results on response to inflation, equilibrium did not 

exist if q <1 (Figures 1 and 2). But under both cost and natural rate shocks, if 

q =1.1 instead of the benchmark 2, equilibrium existed with lower policy rates. This 

monetary accommodation reduced the change in debt, since debt rises with interest 

rates.  But deviations in the other macroeconomic variables increased because of the 

lower policy response.  

 

Since, in a model with debt the forward-looking component of behavior increases, 

q has to be higher than it is in the optimizing SOEME model for equilibrium to exist.  

But the leeway in stability that results from the lags and other structural aspects such 

as a positive steady-state growth built in, shows up in the SOEME debt model in more 

relaxed restrictions on b . The relaxations occur partly since the fall in b  reduces the 

initial deviation in debt. 

 

We define equilibrium to be semi-stable when the initial deviation is high but 

adjustment leads towards the steady-state, even though the steady-state may not be 

reached in the period of our simulations. For highly persistent shocks, equilibria are 

semi-stable. These equilibria are still determinate according to Woodfords definition 

since his qualifier of „reasonable shock‟ is violated.  

 

Table 2 summarizes some simulation results for the sensitivity analysis of monetary 

(natural rate) and fiscal (government expenditure) shocks. The natural rate shock 

simulations are labeled N. In N1 the only change from benchmark shock is b = 0, 
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equilibrium is determinate, the other macroeconomic variables are the same as in the 

benchmark shock, only the deviation in debt is considerably reduced. Similarly in N2 

where b  is lower than the benchmark but still positive. In simulation N3 where all 

the weights in the CB‟s loss function are reduced to 0.5 and b is put at zero, 

equilibrium is determinate. The macroeconomic adjustment is of a similar order of 

magnitude as in N4 where q reduced to 1.1 from 2 but the initial rise in debt is much 

lower for N3 compared to N4. In N5, when steady-state debt b is increased, the 

deviation of debt rises. In N6, a fall in output growth, steeply raises the deviation of 

debt. 

 

With a calibrated 0.01 shock to Ĝ of persistence 0.25 the only effect is a temporary 

fall in debt (G1). But equilibrium is indeterminate if persistence exceeds 0.9. With 

persistence of 0.85 equilibrium becomes determinate but semi stable. Equilibrium is 

indeterminate if q <1, determinate if q =1.1 and above. But volatility in 

macroeconomic variables including debt is so high as to verge on the unstable, for 

Ĝ of persistence 0.85 (G2 and G3). This is so even for the benchmark Ĝ shock q =2 

(G3). But the volatility of macroeconomic variables is reduced if b = 0 since the 

initial rise in debt is considerably reduced. Even so, 
tb̂  remains far from steady-state 

values at the end of 12 periods.  Figures 3 and 4 show, that equilibria are semi stable 

for both the highly persistent N and G shocks since debt does tend towards the steady-

state even if slowly.  

 

Figures 1 and 2 show the regions of indeterminacy and stability in q and qx space. 

Equilibria are unstable for low values of q under a natural rate shock. For a cost 

shock the weight required on q for stability rises as qx rises. If the weight on q is as 

low as 1.1 or 1.2 equilibrium becomes indeterminate for 0 value of qx. 

 

We have kept qi=1 to capture CB‟s preference for small interest rate changes. But 

since a large qi reduces the interest rate response, it can make equilibrium 

indeterminate. 
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For a cost shock, whenever qi  ≥ q >1 equilibrium is indeterminate. When q is less 

than 1, solution exists only when qi ≤ q < 1. 

 

For a natural rate shock indeterminacy exist whenever qi ≥ q > 1. Semi unstable 

equilibrium requires qi < q. When q < 1, equilibrium exists iff qi ≤ q < 1 

 

As in simulations with the SOEME AD AS model (Goyal 2011), a rise in the share of 

the rich and in openness reduces initial interest and therefore debt response, for both 

types of shocks, implying greater debt volatility is to be expected in a poorer less 

globally integrated country.  

 

As for the SOEME, lags and rigidities allow relaxations in the stability conditions. 

The concept of semi-stability captures the slow yet persistent adjustments to 

equilibrium. 

 

We have obtained analytical results on the policy response coefficients consistent 

with stability in emerging models. We next compare the estimated Indian monetary 

policy rule to these results. 

 

5. Estimated monetary policy rule 

We worked with a monetary-policy rule in deriving the stability results. Woodford‟s 

(2001) result was that interest rate rules lead to indeterminacy of the rational 

expectations price level only if the path of the short-term policy rate is exogenous. In 

particular, in his simple optimizing model, determinacy required a feedback from 

inflation greater than one. This is known as the Taylor Principle—for each one-

percent increase in inflation, the central bank should raise the nominal interest rate by 

more than one percentage point (Taylor 1993). Our results suggest that in more 

complex models with different types of lags and rigidities the feedback coefficients 

required for determinacy can be very different.  

 

There is also a large empirical literature estimating the Taylor rule. The original 

equation was: 

      ttx
*
tt

*
ttt yyri                 (31) 
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Where, *

t  is the desired rate of inflation, *

tr is the assumed equilibrium real interest 

rate, yt, is the logarithm of real GDP, and ty  is the logarithm of potential output, as 

determined by a linear trend. Taylor proposed setting aπ = ax = 0.5. As long as aπ > 0, 

an increase in inflation of one percentage point would lead the CB to raise the 

nominal interest rate by 1 + aπ, thus raising the real interest rate. The simple NKE 

models can imply a very low ax, since in forward-looking models with demand shocks 

the feedback to inflation is sufficient to stabilize output
11

. In our calibrated model the 

only feedback condition required for stability is that the feedback from the output gap 

must not be too large.   

 

As the empirical Taylor rule literature developed, the estimated equation was 

simplified. Either the short policy rate was regressed on the deviation of output from 

potential and of inflation from target, or a constant term was assumed to include a 

constant inflation target and real interest rate. So the short policy rate was regressed 

on inflation and on the deviation of output from potential including a constant 

capturing the inflation target. A lagged interest rate was included to capture policy 

smoothing. We estimate the latter Taylor rule specification for India to compare its 

coefficients with the optimizing results, and assess Indian monetary policy.  

 

For the short-term policy rate, we use data at quarterly frequency from 2000Q2 to 

2011Q2. Variables include call or money market rate, GDP and wholesale price index 

in two forms core inflation and headline inflation. All the variables are tested for 

seasonality. Analysis of linear plots suggests that quarterly GDP and WPI series have 

multiplicative seasonality. Hence we de-seasonalize the series using the X-12 ARIMA 

procedure. Output gap was derived using the HP filter for measuring trend output i.e. 

the actual output gap is calculated as the percent deviation of real GDP from a target, 

as it was originally proposed by Taylor:     

 

                                                 
11

 The NKE literature calls it the 'divine coincidence' when the CB does not need to take fluctuations in 

the output gap into account when setting interest rates. Woodford‟s  (2001) differences with the 

empirical Taylor rule were: First, the welfare theoretic loss function implies the inflation target should 

be zero in the pure frictionless model. Second the output gap should be calculated using the natural 

output, not the past deterministic trend. All the shocks, such as technology, consumption of the P-type 

and world income, that affect the natural interest rate in equation (2) affect the natural output. See 

Goyal (2009) for more details on natural output in a SOEME. 
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y = ((Y-Y*)/Y*)*100 

 

where Y is real GDP (or more often industrial production index), and Y*is trend real 

GDP given by HP filter. Year-on-year inflation is measured using annual percentage 

change in Wholesale Price Index (WPI) and defined as headline inflation and core 

inflation is defined as nonfood, manufacturing goods inflation, whose share is around 

52.2 percent in WPI. All the variables (growth rate and inflation terms) are in 

percentages, following the practice in the literature
12

. 

 

Unit root tests, i.e. Augmented Dickey-Fuller test results suggest that all the variables 

are stationary. Durbin Watson test suggest presence of serial correlation and Breusch-

Pagan test shows the presence of heteroskedasticity in the error terms. Hence, we 

estimate our model using ordinary least squares regression with Newey-West 

variance-covariance matrix, in order to correct for both autocorrelation and 

heteroskedasticity. 

 

The two estimated equations with headline inflation and core inflation (t-values in 

brackets) are as follows: 

 

(1) Headline inflation 

(3.12)         (2.83)         (5.24)    (2.71)

32.0156.058.085.1 1 tttt yrr   
 

                  

(2) Core inflation 

(2.93)         (2.06)         (5.21)    (2.96)

29.0126.059.012.2 1 tttt yrr   
 

 

The coefficients are a similar order of magnitude to the reaction functions estimated 

in the simulations. The results suggest Indian policy makers have implicitly 

understood optimality and context in that the response to both inflation and the output 

gap is not high. The exchange rate was market determined in this period. Calibrations 

                                                 
12

 See Hamilton et.al. (2011), Aleksandra Maslowska (2010), Michael Hutchison et.al. (2009). 
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in Goyal (2011a) suggest the feedback coefficients could be even lower, if the real 

exchange rate were stable. The coefficients are also consistent with stability. 

  

6. Conclusion 

Most estimations of Taylor rules for emerging markets, including ours in this paper, 

give a coefficient for inflation of much below unity. The NKE literature shows a 

coefficient of above unity can impose stability in optimizing models with forward-

looking behaviour. Nominal rigidities in NKE models alone do not provide an 

adequate nominal anchor to prevent explosive outcomes. These theoretical stability 

results turn out to be the same in an NKE DSGE model adapted to an open economy 

emerging market model with two types of agents to capture heterogeneity in labour 

markets and consumers.  

 

But in the simulated version of the optimizing model that allows lagged policy rates to 

enter the aggregate demand equation, and has some degree of backward looking 

behaviour, the derived stability condition does not impose any restriction on the 

coefficient of inflation in a policy rule, rather it imposes a cap on the coefficient of 

output. The reaction functions estimated in optimizing simulations are consistent with 

this rule, as are estimated coefficients of Taylor rules for India.  

 

As further consistency checks, analytical solutions to monetary policy shocks using 

the simulation equations, give results similar to the simulations. Therefore a key 

result, supported by analysis, simulations and estimations is: lags and rigidities in the 

SOEME, make it stable for a coefficient of inflation, in Central Bank loss functions, 

simulation reaction functions as well as the policy rule, of less than unity.   

 

Outcomes are stable even with a weight of zero on inflation in the loss function when 

there is no weight on interest rate smoothing, and weights on inflation in estimated 

reaction functions can be very low. The lags in the system, and other structural 

aspects, may be contributing to stability even with a low policy reaction to inflation. 

 

Since, in the SOEME with debt the forward-looking component of behavior increases, 

the weight on inflation in the loss function has to be higher than it is in the optimizing 

SOEME model for equilibrium to exist.  But the leeway in stability that results from 
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the lags and other structural aspects such as a positive steady-state growth, shows up 

in the SOEME debt model in more relaxed restrictions on taxes in response to 

expenditure for stability. The relaxations occur partly since a fall in tax rates reduces 

the initial rise in debt. 

 

The results suggest, more generally, that the effect of specific rigidities on stability 

should be more carefully explored, and knowledge of the specific rigidities in an 

economy can give useful inputs for the design of policy.  
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Appendix A 

To derive equations (13) and (14) for the simulation model for a monetary policy rule: 
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ttxt,Ht vxr                  (A3) 

 

ttvt vv   1                (A4) 
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Substituting for rt-1 and rt from equation (A3) we get: 
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







































 

tttx

f

tH

f

ttxtH

f

b

tDtD

Df

rrvx

vxxx

8.08.018.0

2.02.02.011

,

111,1

























 

 

Substituting for 




f

t,H  from equation A2, that is: 

  1,1,,

1
  tH

f

b

tD

f

tHtH

f

x 











  

 

Solving for xt: 

   




















































































tttH

f

b

tD

f

tHf

ttxtH

f

b

tDtxD

Df

rrvx

vxxx

8.018.0

2.02.02.08.011

1,1,

111,1






























 

or, 
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   

 





















































































tttH

f

b

tHfttxtH

f

b

tDtD

f

fxD

Df

rrvvx

xx

8.018.02.02.02.0

18.08.011

1,1,111,

1






























 

 

or, 

   

 








































































tttHfttxtHb

f

b

tDtD

f

fxD

Df

rrvvx

xx

8.018.02.02.08.0
2

2.0

18.08.011

1,111,

1

























(A6) 

 

Taking expectations on both sides and setting:   

   














 
























D

f

fxD

Df

.. 1808011

1
 

 

Gives equation (13) in the text. 

 

To solve for the AS equation, substitute equation (A6) in the equation given below: 

 

  1,1,,   tHbtDtHftH x   

 

 

  

   1,1,1

11,11,,

8.018.02.0

2.08.0
2

2.0






























tHbtttHft

txtHb

f

b
tDDtHftH

rrvv

xx













 

 

     

   

  tttD

txDtHbb

f

b

D

tDDtHfDftH

rrvv

x

x










































8.02.0

2.08.0
2

2.0

18.0

1

11,

11,,














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Taking expectation on both sides gives equation (14). 

 

Appendix B 

To derive the stability conditions for the simulation model equations with a policy 

rule: 

 

The first stability condition can be stated as: 

01   BA  

  1 BA  

  

      

   















































b

f

b
Dxbb

f

b
D

xfDDfDfD

.....

...



















80
2

202080
2

20

20180180
1

 

 

      

   
































b

f

b
Dxbxb

f

b
D

xfDDfDfD

......

...



















80
2

20202080
2

20

20180180
1

 

 or,  

bxfD . 


20
1

  

  

The first condition implies,   120   bxfD .   

 

The second condition is: 

01   BA  

  1 BA   

   

      180180

80
2

202080
2

2020
1




































































fDDfDfD

b

f

b

Dxbb

f

b

Dx

..

......
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or,

   

     180180

80
2

20202080
2

2020
1





















































fDDfDDfD

b

f

b

Dxbxb

f

b

DxD

..

.......

  

 or,   




fDbx.  20
1

   

or,  

  fDbx.  201   

 

 Therefore second condition requires   120   fDbx.   

 

Appendix C 

To derive the response to monetary shocks in the simulation model with a monetary 

policy rule: 

 

Assuming 0trr and guessing that the solution will take form: 

121,

121









tttH

txtxt

vv

vvx

 


               (C1) 

 

Imposing the guessed solution on equation (13) and (14) and using the method of 

undetermined coefficients, we can solve for the Ψs. Write the AS equation (3) as: 

  11

1
  t,H

f

b

tD

f

t,H

f

t,H x 











             (C2) 

 

Using C2 we have: 

 
 11

1
 


 t,Htft,Hbt,H

D

t Ex 


 

 and, 

 
 211

1
 


 t,Hft,Hbt,H

D

tx 


 

Therefore,  
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 
 211

1
 


 t,Htft,Hbt,Ht

D

tt EExE 


  

and,  

 
 t,Hft,Hbt,H

D

tx 





  211

1
  

 

By substituting these values of xt , xt-1,  and xt+1 in equation 13, we get: 

 
 

 
 

 
   

]8.0

18.02.0
2.0

8.0
2

2.0

[
1

11,

1,2,1,1,

2,,1,1,1,,

tttHt

fttHftHbtH

D

x

tHb

f

b

tHtftHbtHt

D

D
tHtftHbtH

D

rrvE

v

EEE
































































 

  

 
 

 
 

 

       
  









































































12,1,,

2,1,1,1,,

8.02.0
2.02.0

8.0
2

2.0
2.0

18.0
1

ttH

D

bx

tH

D

x

b

f

b

tH

D

bD

D

fx

tHt

D

Df

tHtf

D

D

tHtftHbtH

D

v

EEE










































 

 

   
 

 

         

 
  






















































































12,

1,,

2,1,

8.02.0
2.0

2.0
8.0

2
2.0

12.0

18.00

ttH

D

bx

tH

D

b

D

x

b

f

b

tH

DD

bD

D

fx

tHt

D

Df

tHtf

D

f

D

D

v

EE
















































 

 From C1: 

121,  tttH vv     

tttH vv   2111,    

tttHt vvE   211,   

tttHt vvE   2

2

12,   

22111,   tttH vv    

32212,   tttH vv    
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Substituting these values: 

 
   

   

 
 

     
 

   
 

 
 

















































































32212211

1212

2

1

211

2.02.0
8.0

2
2.0

12.0

18.08.02.0

tt

D

bx
tt

D

b

D

x
b

f

b

tt

DD

bD

D

fx

tt

D

Df

ttf

D

f

D

D
t

vvvv

vvvv

vvv



















































 

 

 Since there is no term for vt vt-2 or vt-3 their coefficients will become 0. Therefore 

solving for vt-1, gives: 

 
     

    11

121

20
80

2
20

120
8020
















































t

D

b

D

x
b

f

b

t

DD

bD

D

fx

t

v
.

..

v
.

v..






























 

  

Since, 01  we have: 

 

     


































 

DD

bD

D

fx.

..

120

8020
2   

or, 

 

     

1
120

8020

























 t

DD

bD

D

fx

t,H v
.

..











  

 

1 tt,H v   

 

where,  

 

     

































DD

bD

D

fx 12.0

8.02.0
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 From the manipulations of C1 we have: 

 
 1,1,,

1
 


 tHftHbtH

D

tx 


 

 

Using the above two equations we can calculate the equation for xt  

 
 1,1,,

1
 


 tHftHbtH

D

tx 


 

or,  

 
 tftbt

D

t vvvx 





  21

1
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Table 1: Benchmark calibrations 

Baseline Calibrations   

Degree of price stickiness  0.75   

Price response to output  0.25  

Labour supply elasticity of P type P 0.01 

Labour supply elasticity of R type R 0.6 

Elasticity of substitution between differentiated goods ε 6 

Steady state real interest rate or natural interest rate  or i  0.01 

Variations in the natural interest rate due to temporary shocks rr  0.01 + 

Degree of openness  0.3  

Proportion of the R type  0.4 

The intertemporal elasticity of substitution of the R type R1  1  

The intertemporal elasticity of substitution of the P type P1  0 

Consumption of the P type Cp 0.2 

Consumption of the R type CR 1 

Share of backward looking inflation b 0.2 

Share of forward looking inflation f 0.8 

Response coefficient of taxes to the debt ratio b  0.15  

Response coefficient of taxes to G expenditure 
g  0 

Steady state public debt to output ratio b  0.8 

Monthly growth rate g  0.006 

Weight of output in the CB‟s loss function qy   0.7 

Weight of inflation in the CB‟s loss function q 2 

Weight of the interest rate in the CB‟s loss function qi 1 

Implied parameters   

Weighted average elasticity of substitution 1/D  0.58 

Discount factor  0.99 

Weighted average consumption level C 0.75 

Log deviation from world output  0.1 

Philips curve parameter  0.24 

Steady state real interest rate, discount rate  0.01 

Labour supply elasticity 1/ 4 

Shocks    

Persistence of shock to G expenditure 
G 0.25 

Persistence of natural rate shock 
r 0.75 

Persistence of cost-push shock 
c 0 

Standard deviation of shock to G expenditure G
  0.1 

Standard deviation of natural rate shock r
  0.01 

Standard deviation of cost-push shock c
  0.2 
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Table 2: Simulations and volatilities 

Simulations Parameters Standard deviations of (in percentages): 

  

006.0,15.0,8.0  gb b  

q=2, qy=0.07, qi =1 

Consumer 

inflation 

Output Domestic 

inflation 

Government 

debt (initial 

response) 

Interest rate 

(initial 

response) 

Cost shock Benchmark 0.58 0.36 1.08 0.48 (-

0.0174) 

0.70 (0.0256) 

 b=0.1 0.58 0.36 1.08 0.45 (-

0.0162) 

0.70 (0.0256) 

 g=0.008 0.58 0.36 1.08 0.47 (-

0.0169) 

0.70 (0.0256) 

 b =0.7 0.58 0.36 1.08 0.42 (-

0.0151) 

0.70 (0.0256) 

 q=1.1 0.71 0.18 1.21 0.16 (0.0056) 0.50 (0.0181) 

Natural rate 

shock   N 

Benchmark  0.47 0.16 0.31 6.18 (0.2088) 0.39 (-0.0133) 

N1 b =0 0.47 0.16 0.31 2.20 (0.0745) 0.39 (-0.0133) 

N2 b =0.1 0.47 0.16 0.31 3.90 (0.1319) 0.39 (-0.0133) 

N3 qs=0.5, b=0 1.01 0.42 0.91 1.81 (0.0614) 0.82 (-0.0276) 

N4 q= 1.1 1.04 0.46 0.97 5.12 (0.1730) 0.83 (-0.0279) 

N5 b =0.9 0.47 0.16 0.31 7.27 (0.2456) 0.39 (-0.0133) 

N6 g= 0.004 0.47 0.16 0.31 5.36 (0.1813) 0.39 (-0.0133) 

Ĝ  shock 

G1 

Persistence= 0.25  0.00 0.01 0.00 1.14             

(-0.0412) 

0.00 (0.0000) 

G2 

 

Persistence =0.85, q = 1.1 80.07 14.40 42.38 251.63          

(-9.6890) 

37.48 (-

1.4167) 

G3 Persistence = 0.85 87.47 08.67 28.19 935.66          

(-3.5970) 

37.65 (-

0.1389) 

G4 Persistence = 0.85, b = 0 01.15 0.12 0.42 14.43             

(-0.5551) 

0.56 (-0.0204) 
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